TECHNICAL REPORT R-99

THEORY OF THE SECULAR VARIATIONS IN THE ORBIT
OF A SATELLITE OF AN OBLATE PLANET

By WILLIAM A. MERSMAN

Ames Research Center
Moffett Field, Calif.







TECHNICAL REPORT R-99

THEORY OF THE SECULAR VARIATIONS IN THE ORBIT OF A SATELLITE OF
AN OBLATE PLANET

By Wirniam A. MERsMAN

SUMMARY

The theory of satellite orbits about an oblate planet
18 studied by means of a new set of canonical vari-
ables. The Iamiltonian function is separated into
two parts, one of which is neglected. The neglected
part is periodic with mean value equal to zero,
and it vanishes when the inclination is zero. Thus
the solution obtained by neglecting this part of the
Tanultonian is exact for equatorial orbits; for
inclined orbits the secular motion of the node and
perigee are obtuined correctly to the second order
in the oblateness parameter.

For satellite orbits the geometric equation of the
trajectory 1s obtained in the classical form in terms
of true and cccentric anomalies, with these being
related to the physical angle (argument of latitude)
by transformations involving elliptic functions.
The kinematic equation obtained is a natural gen-
eralization of Kepler's equation. All the orbital
elements are constanis in this approximation; the
perturbation equations for the clements are exhibited
but not solved.

A numerical example is included based on the
satellite 1958 B2 (Vanguard 1). Secular motions
are predicted accurately, and periodic motions within
the limitations of the theory.

Relatwistic effccts are shown to be negligible as
Jar as the geometry of the orbit is concerned, while
the secular drift of a satellite-borne clock 1s shown
to be on the fringe of detectability.

INTRODUCTION

The theory of satellite orbits about an oblate
planet has been discussed by many authors in
recent years, using a variety of methods. Brouwer
(ref. 1) has obtained a solution by starting with
the clliptical orbit and then computing the effects
of oblateness by von Zecipel’s modification of

Delaunay’s method. Garfinkel (ref. 2) uses the
same method but starts with an intermediate
orbit, obtained by means of an approximate
potential function (for the planet’s gravitational
field) that leads to scparability of the ITamilton-
Jacobi equation in spherical polar coordinatos.
Vinti (ref. 3) obtains an implicit solution in closed
form by solving the Hamilton-Jacobi equation in
cllipsoidal coordinates. Kozai (ref. 4) beging
with  the clliptical orbit and then applies
Lagrange’s method of variation of parameters.

The purpose of the present paper is to obtain
a new intermediate orbit having three important
properties. TFirst, it is the complete solution in
the equatorial case. Second, in the case of inclined
orbits, the secular motion of the node and perigee
are treated correetly to the second order in the
oblateness parameter.  Third, the clements of
the orbit are displayed explicitly in the form of
rapidly converging series involving the oblatencss
parameter, which can easily be carried to any
desired order of accuracy and are well adapted
to numerical computation. Thus, the solution
presented here is more tractable than Vinti’s
and is more accurale than the others in the
equatorial case.

Finally, the perturbation equations relating
the intermediate orbit to the complete problem
are obtained but not solved, simply to put the
present solution in its proper perspective.

SYMBOLS

semimajor axis of orbit, dimensionless

cocficient in orbit equation, appen-
dix D

coefficient in Fouricr scries expansion
of elliptic integral

angular momentum in relativistic equa-
tions
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cocfficients in Fourier series for T

speed of light
coefficient used to make §=0 at perigee
cocflicients in Fourler series for cos »

dissipative force
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dimensionless dissipative force, L
n

total energy in relativistic equations
cccentrie anomaly

complete elliptical integral of second

kind

generalized focce

frequency parameter in elliptic func-
tions

generating function in Hamilton-J acobi
theory

distance-dependent portion of gener-
ating function

force

generalized force

characteristic cubic

universal constant of gravitation

characteristic cubic

Hamiltonian function

secular portion of Hamiltonian function

periodic portion of Hamiltonian func-
tion

angle of inclination of orbital plane to
carth’s equatorial plane

dimensionless  coefficients
gravitational potential

in earth’s

%—]—2; Jefreys’ coefficient

modulus of elliptic functions

complementary modulus

complete elliptic integral of first kind

complete elliptic integral with comple-
mentary modulus

Lagrangian function

mass ol satellite

mass of planet

mean anomaly

cocfficients in series expansion of mean
anomaly (Kepler’s equation)

mean motion

order of magnitude

gencralized momenta

radial velocity, dimensionless

angular momentum, dimensionless
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axial component of angular momentum,
dimensionless

total energy

semilatus rectum, dimensionless

genceralized coordinates

Jucobi’s nome

time of perigee passage

argument of perigee

right ascension of ascending node at
time of perigee passage

planet’s equatorial radius

geocentric distance

. . . . (s}
dimensionless disturbance function ;T/T’
v

secular portion of S

periodic portion of §

kinetic energy, dimensionless

time, proper time

reciprocal geocentric distance, dimen-
sionless

roots of characteristic equation

negative Newtonian potential

true anomaly

cocflicients in Fourier series for »

velocity

auxiliary variable used in Cardan’s
solution of the cubic

roots of characteristic equation

velocity, dimensionless, V yR/u

generalized forces

geocentric right ascension

definite integrals used in derivation of
Kepler's equation, appendix E

azimuth of velocity veelor, clockwise
from north

flight-path angle, upward (rom hori-
zontal

geocentrie declination

discriminant of characteristic equation

eecentricity of orbit

parameter related to cccentrieity

auxiliary angle used in Cardan’s solu-
tion of the cubie

total energy, dimensionless

limiting values of » for positive dis-
criminant

value of n for which orbit is tangent to
surface of planet

auxiliary angle used as independent
variable; equals right ascension for
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A8, Ag

4, dm

o .0 Ry @

r, a8,

QDJI

equatorial orbits, declination for
polar orbits

advance of perigee per revolution

cocflicients in Fourier series for o

auxiliary angle and coeflicients 1In
Fourier series for v

o/, independent variable in series ox-
pansions

G(AL-+m), dynamical constant of gravi-
tation

u/Ie* relativistic oblatencss parameter,
dimensionless

r/R, dimensionless geocentric distance

1 . .
3 P2 dimensionless

oblateness-inclination parameters, di-
mensionless

oblateness-incelination-relativistic par-
ameter, dunensionless

dimensionless titne, t4/u/R3

time of perigee passage

disturbance potential

argument of Iatitude

argument of perigee

sccular and harmonic coefficients in
Fourier series for ¢

auxiliary angle in clliptic functions

earth’s spin velocity

right ascension of ascending node

advance of ascending node per revolu-
tion

right ascension of ascending node at
time of perigee passage

secular and harmonic coeflicients in
Fourier series for @

binomial coefficient

Lagrangian bracket
degrecs of arc
seconds of are
absolute value
didr

SUBSCRIPTS

conditions at apogec

conditions at perigee

initial conditions

referred to inertial frame

referred to earth

components of vector in direction of in-
creascof variabledenoted by subseript

ORBITAL COORDINATES AND THE EQUATIONS
OF MOTION

The orbital coordinates to be used here were
introduced (in a different notation) by the present
author in reference 5, and are shown in figure 1.

7

North |Pole

FIcUrrE 1—-Coordinate systewms.

The equations of motion (ref. 5, eqs. (33), (34))
are

&r V: F,

i r m

d(rV,) _rF,

dt m
dQ _ Fising
dt = mV,sin I
dl . dQ
Zr=sin Ictng It

17 f——t —_— —
Ve=r dt+dt cos I)

where F,, F,, and F are the force components in
the direction of increasing r, ¢, and 7, respectively.
Tt is convenient to separate them as follows:

£

—_#,0% D
- r2+01'+m

m
F,_12%,D,
m 7 Oga m

F] 1 Q(E‘DI
m rsinedl ' m




4 TECHNICAL REPORT R—-09—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

where ® is the disturbance potential (due, for
example, to oblateness) and D,, Dy, Dy are forces
not derivable from a potential (for example, air
drag).

It is convenient to introduce dimensionless
variables as [ollows:

r D, 23
P—ﬁ DP—' mu
=t~/ % 2
r=Iyu/R D¢=D¢R 9 )
We= /‘p\‘m e
: 2
g2 p,=D:
4 mu J

where R is the equatorial radius of the planet, ¢
is time measured in scconds, 17, is the horizontal
component of velocity, and p=G(-+-m), where
G is the universal constant of gravitation, Af is
the mass of the planet, and m is the mass of the
satellite,

Adopting the conventional values for the carth,

R=6378.388 km  u=2398632.9 km®/sec?

and assuming that m/M is negligible, gives
13.44710 minutes as the unit of 7 and 7.905532
km/sce as the unit of W,

The equations of motion can now be written in
the dimensionless form

dp W,2 1,08 A
o 92+5p+D"
(T, DS
dr _ago—l_pr
(IQ 1

Y

1 %Aj’*‘D’ sin (p) @

“W,sml

dQ
dr

({f(p dQ )
Vo=p
J

EQUATIONS OF MOTION IN LAGRANGIAN FORM

ﬂ—sm I ctn ¢

dr

Define the Lagrangian, L, by
1
L:T+;+S
where the kinetic energy, 7, is given by

1., 12
=5 otz W

and the dot denotes differentiation with respect to
r. Then the equations of motion can be trans-
formed into the four-dimensional Lagrangian form

d /OI\ OL
dr \dp “ap—D" )

( oL DL oD,

(b[ E)I_pDI sin ¢
—p(D cos [—D;sin I cose)

(asz) RO ‘ o

The derivation of the first three is straight-
forward ; the fourth requires the relation

g_gzg_f cos I-% sin I c¢tu ¢ )

which is valid for any function of position
S(p,qo, Q;I):S(P;a} 5)

This relation is proved in appendix A.
EQUATIONS OF MOTION IN CANONICAL FORM

Since the Lagrangian, 7., does not contain I it
follows that I is an ignorable coordinate. Follow-
ing the usual procedure, consider the remaining
coordinates, p, ¢, 2, and the conjugate momenta,
defined by

_dL_, )
pp_bb_p
oL G
P¢=a—¢=pW¢=p2(<p+Q cos I) ¥ (5)
oL
pgzag—pIV cos [=p, cos [ J
so that [ is given by
I=arc cos (pa/p,) (6)
Next introduce the ITamiltonian (the total
energy)

e I N AR
=27 L—ZPF2+2<p) (=S 0 %, D) ()

with 7 to be replaced by equation (6), so that 7
is expressed explicitly as a funetion of the co-
ordinates p, ¢, ¢ and momenta p,, pe, pe.
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It is again a straightforward process to trans-
form the equations into the canonical form

dp_l1 ~
dr op,

(Iga_b’[ ppel); sin

dr Op, pSisinl

dQ_oll  pD;sin ¢

dr~ Opa ' ppsinT

d ol [ ®)
ape . _ 971

&~ op T

d oIl

&= oD

%=—%—g+p(l)¢ cos I—D; sin [ cos ¢)J

Thus, in the absence of dissipative forces, these
equations are in canonical, TTamiltonian form.
This means that the enormous body of literature
on the subjects of contact transformations, varia-
tion of parameters, and the HHamilton-Jacobi
theory is available for their solution.

It should be remarked that equations (8) are a
completely general formulation, valid for any
problem in celestial mechanics, since the only
resirictions are that the dominant force be an
inverse-square central foree (this is the term
—1/p?in the first of egs. (2)) and that the disturb-
ance function, § be a function of position only
(sce appendix A).

In the case of an oblate planet, the disturbance
function, S, is usually written in the form (ref. 1,
p- 396).

=_§2 JoPi(sin §)/p*t1 (9)

where Py is the Legendre polynomial of degree £,
and (sce appendix A)

sin §=sin I sin ¢

Following Brouwer, the case in which .S is trun-
cated at £=2 will be called the “main” problem.
In principle, additional terms can be handled by
perturbation methods.

It may be remarked that the definition of the
Lagrangian is not unique.  Because of the relation
between I and @ (the fourth of ecqs. (2)), the
horizontal velocity, W,, could be expressed in

terms of [ instead of ¢. Then @ would be the
ignorable coordinate. The present procedure is
preferred for two reasons. First, the ignorable
coordinate, I, is given directly by equation (G)
without an additional integration. In the alter-
native procedure the ignorable coordinate, @,
could be obtained only by integrating the equa-
tion for its derivative. Seccondly, the purpose
here is to study motion about an oblate planet,
with a disturbance function of the form given by
equation (9). Now this form assumes axial
symmetry. Thus, the disturbance force lies
entirely in the meridian plane, and has no cast-
west component. Ilence one integral of the
equations is known immediately; namely, the com-
ponent of angular momentum along the planet’s
axis is constant. In the present notation, this
means that the conjugate momentum pg is con-
stant. This enters the analysis in a natural way
and reduces the order of the system of equations
immediately.

THE MAIN PROBLEM OF ARTIFICIAL SATELLITE
THEORY

For the main problem the disturbance function,
S, reduces to

S:is <,1—sin"’I sin%) (10)
p°\3
where

3
J=§ Jg

For the carth, J=0.0016232 (ref. 6), when R
is taken to be the equatorial radius. Now S can
be separated into two parts, only one of which is

dependent on ¢:
S=8,+S,

T (13
S'U—-S—pg (1'—‘2 S1n [)

J .
Si=5— sin®] cos 2¢
2p

where

Reealling equation (6) for 7, this leads to a splitting
of the Hamiltonian into two parts:

H=IT,+1I,
71 51 l’_s»)?_l J l_@)
H=g ety (%) =4 (3 e

(11)

J . . J (pa’
I[lz—'z? sin?/ cos 2¢:2—p3 ])‘5_2— 1) Ccos 2(,0
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Thus, 77, is independent of ¢, while 7, is periodic
in ¢ with mean value equal to zero and vanishes
for equatorial orbits.

Tt may be remarked that the Tamiltonian can
always be split in this way for any disturbance
function of the form of equation (9). The odd
harmonics contribute nothing to ITy, sinee the odd
powers of sin ¢ all have mean values equal to
zoro. The even harmonics contain only even
powers of sin ¢ and hence contribute both to I/,

and 77,. For example, the contribution of the
fourth harmonic to 71, is
199 uar 13 uor+2)
J4 o sintl Ssml—{—s P

while its contribution to 17, is

J4[ %S

For the main problem considered here these higher
harmonies will be neglected.

The “intermediate’” orbit mentioned in the
introduction is defined as the solution of the
problem when I7; and the dissipative forces are
neglected. This will be referred to as the “inter-
mediate problem,” and its solution is the primary
objective of this roport.

2]——— sm‘I) cos 2(,9—]——— sin*/ cos 4<p:]/

THE INTERMEDIATE PROBLEM

Substituting II, in equations (8) and dropping
IT, and D gives the intermediate problem

d—_p_ N
ar
(]ga Do JIP0°
T +p3]) 3
dQ__ Jpa
dr PPt
d 2 J (12)
ﬂ____"__._l.___ _ 2 2)
dr g ot P 1 2smI‘
dpe_
dr
d[)g
&0

P

with
cos I=pa/p, (13)

The last two of equations (12) show immediately
that pe, Pa, and, hence, I arc constants for the

intermediate pr oblcm Tn terms of physical
quantities,
Pe=pW,
pa=pW, cos T (14)
= Vﬂ‘"’m

and V, is the horizontal component of velocity.
Thus, p, is the angular momentum, and py is the
component of angular momentum along the polar
axis of the planet (both in dimensionless form).
One method of attacking the intermediate
problem (eqs. (12)) is to scck a solution of the
TTamilton-Jacobi equation (ref. 7, ch. 8)

oF

where

F:F(T) p; &b, Q:PP; PP)PSI)

is a function containing three arbitrary constants,
P,, P, Pg, and in H, the momenta are to be
replaced by:

p,=0F/0p
Ppo==0F/0¢p (16)
pa=0F/00

If such a function, F, can be found, then the
complete solution of the intermediate problem is
obtained by setting

OF/ol, =@,
oF P, =@, a7
OF /oPa=Qn

where, Q,, Q,, Qe arc threc additional arbitrary
constants, giving six in all. In principle, the six
equations, (16) and (17), can be solved for the
six variables p, ¢, @, Ps, Pe, Pa in terms of = and
the six arbitrary constants. In practice, as will
be scen below, the coordinates ¢ and @ will be
obtained directly from equations (12).

One method of solving the Hamilton-Jacobi
cquation (15) is by separating the variables, that
is, by secking a solution of the form

F=F(p)+Ppo+PoQ—DPor (18)
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This

where PP,, P,, Pq are arbitrary constants.
reduces equations (16) to:

_dF
pp—' dp
="
pﬂ:PQ

(19)

The Hamiltonian, I7;, equation (11), now becomes

LY LBy,
2\ dp 2\ »p p 30
J(§ SP“ J<1—~ sm"’[)

and the Hamilton-Jacobi equation (15) reduces to
the ordinary differential equation

1 /dF\? P,
i(a) () 4 @
In principle equation (21) can be integrated
(as an elliptic integral of the third kind) to give
F(p). As is shown in appendix B, the six arbi-

trary constants then have the following physical
significance:

where

r, total cnergy

r, total angular momentum

Pq polar component of angular momentum
—Q, time of perigee passage

Q. argument of perigee

Qq right ascension of the ascending node

when the satellite is at perigee

Equations (12) could then be integrated to give
7, ¢, and @ as elliptic integrals of the third kind in
terms of p and the six constants, with the momenta
being given directly by equations (19).

The transformation from the variables (p, o,
Q; Doy Do, pﬂ) to t‘he set (Qﬂ; Qm QQ) Pm PO; PQ) iS,
of course, a contact transformation. When 17,
and the dissipative forces are included, then the
I’s and @’s are no longer constants but satisly a
new sct of canonical equations. This set of equa-
tions is exhibited in appendix C, to show explicitly
the relation of the intermediate orbit to the com-
plete problem; no attempt will be made to solve
these equations in the present report.

To return to the intermediate problem, the
method of solution outlined above is unsatisfactory
for two reasons. FElliptic integrals of the third
kind are notoriously intractable to analysis, either

593524—61 —2

algebraic or numerical. Furthermore, in this
representation all the coordinates, including time,
are expressed as [unctions of p, whereas a solution
with either 7 or ¢ as the independent variable
would be casier to interpret geometrically. While
this ideal goal appears unattainable, it can be
approached by introducing certain auxiliary vari-
ables, as will be seen in the next section. It then
becomes possible to classify intermediate orbits
according to a simple geometrical scheme, with
cnergy and angular momentum as parameters.
Closed form solutions will be obtained in terms
of trigonometric, hyperbolie, or elliptic functions.
The latter will be expanded into rapidly converging
series, and natural generalizations of many classi-
cal equations and concepts will be exhibited.
While the main emphasis is on satellite orbits,
all possible{types of orbits will be exhibited and

identified.
THE ENERGY EQUATION

If p, is climinated from equations (12), the
resulting system is

o _PS 1 o)

d,r2_ p3 pz p4

de D

= "+,)H g (22)
de_—JPg

dT—P¢2P3 J

with ¢ given by equation (20) and

pPZPﬂl’
Z?n:Pn

cos I =%

(4

P, and Pg being constants, Substituting the
first of equations (19) into equation (21) gives

sy -ri(B+s @

which is simply the first integral (the energy in-
tegral) of the first of equations (22).

In the case of the classical two-body problem,
with J=¢=0, the usual procedure is to take ¢ as
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the independent variable and to introduce a new
dependent variable, », which is the reciprocal of p:

= (24)

Tn the present case equation (24) will still be used,
but for the independent variable it is more con-
venient to introduee an angle, 8, defined (except
for an additive constant) by

w W, P .
L= =i (25)
Then
do__pdu
dr “do
(26)

d?p d>u
PR}

and equations {22) become

2, N
22%:1——2&11-{—01{2
de ., JDPg?
sy (27)
J_SZ_~JPnu
(18— Pw3 ‘ J
where
__1 32 3
E_ﬁ I @ (28)
and the energy equation (23) becomes
duN' e Lo
£ de) =ntu—fu? + 5 ou (29)

where, for convenience in writing, the total energy
is denoted by 7:

14 1
n=P,= §II *ﬁu—g ou? (30)

Thus the intermediate problem is reduced to
solving the energy equation (29); once u has been
obtained explicitly as a function of 8, the other
quantities can be obtained from cquations (25)
and (27) by quadrature.

If higher harmonies are retained in the disturb-
ance function, the energy equation becomes

du\? N S
£ (16)_77+u Eu -|-3 o +5 o’ ...
105 . 15 . 3
a1=J 64 sin? I——SA sin? I+§>

there being one additional term for ecach even
harmonie.

It may be noticed in passing that the first of
equations (27) has other physical applications.
For example, if # is interpreted as a distance and
8 as time, this equation describes the motion of an
undamped spring with a nonlinecar restoring force.
The same equation also occurs in orbit theory
when relativistie effects are included (ref. 8).

The parameters J and ¢ will not be permitted
to assume arbitrary values. For the ecarth, J=
0.0016, and comparable values seem to be ap-
propriate for the other planets. (An exhaustive
study of the physical meaning of J is given by
Jeffreys in ref. 9.) In this report the extremely
conservative condition J< 1 will be imposed, so
that —1/2<e¢<{1. The analysis is simplified
thereby, and no planet of the solar system will be
excluded. This does, however, limit the generality
of the analysis with respect to other physical
applications.

It may also be remarked that in gencral the
angle, 8, does not have any obvious geometrical
significance. Qualitatively it differs from the
argument of latitude, ¢, by a small quantity of
order J. However, in the case of polar orbits,
p=¢—=>25 (except for an additive constant). In
the case of equatorial orbits 6=«, and € is unde-
fined and unneceded. Thus in the two extreme
cases 8 does have a simple interpretation—declina-
tion or right ascension.

To return to the analysis, the energy equation
(29) is integrable in general in terms of elliptic
functions and integrals. The precise nature of
the solution depends on the roots of the “charac-
teristic equation”

h(u)zn—!—u—éuz—l—é— aut=0 (31)

Thus il is necessary to begin by studying this
cubic equation.

THE CHARACTERISTIC EQUATION
The usual method of studying a cubic equation

is known as Cardan’s method (vef. 10, ch. 1V).
Making the substitution
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W=E{—ou (32) All possible intermediate orbits can now be
classified as follows:
gives the characteristic equation in the form 2>0  cscape orbits
1 _ 7<0  bounded orbits
-‘7<w)z—§ [+ 3(c —£H) w26 — 30t —30™y]=0 n>nr caplive orbits (intersect the planet’s sur-
(33) face)

. 1<y free orbits (do not intersect the planet’s
and the energy equation (29) becomes surface)

Free orbits can be [urther classified:

4+

dw\?
¢ (‘) =9 (39 .
<, £ 5 entirely inside the planet

The diseriminant of g(w) is 27A, where
9 ’

1+¢ . ]
S L E>>——  entirely outside the planet
A —oP— (ot 3ei—2p) @3 T ImETg ¥ p

If £>0, A can be factored z\lS(-), bounded, captive orbits \}e’ill be (.‘alled missile
orbits, and, clearly, the satellite orbits are those
A= —9e*(p—m1) (n—72) (36)  that are bounded, free, and outside the planet.

These classifications are indicated on figures

where . . >
2 and 3. Their prool involves actually obtaining
_ 28 —36t4-2(8—)*? the roots of the characteristic equation in every
' 302 case and examining their behavior as functions

(37) of £and 5. Only satellite orbits will be considered
in detail, but appendix D contains a complete
catalog of all possible orbits, with a brief dis-
cussion of cach type.

283 —3ot—2(2—q)%?
T RY&

The curves n=mn,, and 9=n; are shown in figures

2 and 3 for ¢>0 and ¢<<0, respeetively (for ex- K nen
ample, for ecquatorial orbits, o=<; for polar '
orbits, e=—J/2). The significance of these
curves is the following * If £2>>¢ and 5, <7<, then
the charactleristic cquation has three distinet ¢/
real roots. If 9=m; or 7, then the characteristic -
equation has a double root. In all other cases sy,
there is one real root and a pair of conjugate /?ree
complox roots. Coptive es|cajfpe orbits // %Sr%?f’se
S P -
d
Another important “curve” is the straight line 7 sateliite orbits
Missilie] orbits // 277
1 s 2
1=nr=f—1—30 (38)
along which =1 is one of the roots of the charac-
teristic equation. This line is tangent to the
curve n=mn, at the point
1 /// Intelrnal orbits
bl

FreorE 2. —Classification of orbits. Equatorial case:
(see figs. 2 and 3). a>0.
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Imaginary orbits
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Figure 3.—Classification of orbits. Polar case: ¢<<0,

SATELLITE ORBITS

Satellite orbits are defined by the inequalities
7<0 )
1<nr

N2>

~v—

(39)

110

J

ITowever, the following analysis is applicable
essentially to the entire region with a positive
discriminant:

£>0

m<nSm
Whenever the analysis is restricted,
mention will be made of the fact.

To solve the characteristic equation, define an

angle ¢ by

explicit

sin23—§ 12
2 m—mn

s

»0<¢< (40)

C,Ca

so that
_ 28 —30f—3d%y
cos 3{————2@2_0)3,2 (41)

and the characteristic equation becomes

g(a) =—3 w3 —a)w-+ 2(*— o) cos 3¢]=
(42)
The three real roots are (ref. 10, ch. IV):
s con(35)
w,=2vE2— 0 cos (I—I— ;)
3
> (43)
wy=—2+/¢¥—0o cos {
w=" =1, 2, 3
g J
and clearly
Wy > W, > Ws
0
w; > (44)
wy< 0
wi+w,+w;=10

The energy equation becomes
3% (dw> =— (w—w) (w—w;) (w—ws)

and there are two solutions (ref. 11, egs. 232.00
and 236.00):

w=wy— (wp—wy) tn 2(f8+C) (45)

and

w=w,+ (w,—wy)sn? (f8+C)
=w,+ (w1 —wy)en? (f6+C)

(46)

where tn, sn, en are clliptic functions with modulus

k, and

=W sin ¢ W
—w; sin (5“—{—5) & @
. sin (H— 3> 22—0
ap=ts / |

and C'is a constant to be specified later.

an
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The first solution, equation (45), is physically
unrealizable, since, if ¢>0,

F—w E—w £ ]
_T>T>E>;’;>] , el

while, if ¢<0,
F—w

u== M0, o

ag

that is, il ¢>0, the orbit lics entirely inside the
planct, while, if <0, the orbit is imaginary, since
p cannot be negative.

In terms of «, the second solution, equation (46)
becomes

u1) sn? (f6+4-C)
u,) ent (f6+-C)

U=uy+(u,—

:‘u2-|-(u1—

(48)

TRANSFORMATION TO CLASSICAL FORM

For mnemonic purposes, use subscript p for

perigec and a for apogee. Then
A
up:u;g
if 60
U,=U1
> (49)
Uy,=Uy
if <0
U=y
J

and, by equation (48), u,S<u<u, in either case.
Equations (43) can be used directly to show that
#,=0 when 7=0, and, on the line 3=7y;,

1%—0

u,=11l >

It then follows from equations (40) and (43) that,
if £1s held fixed and # is inereased, then the perigee
distance (p,=1/u,) decreases and the apogee dis-
tance (p,=1/u,) increases. This is valid in the
entire region where the diseriminant is positive
#>0, m<a<n) and is suflicient to prove the
classifications mentioned earlier and indicated in
ficures 2 and 3.

For free orbits (¢8> (1406)/2, 7<yr) it is conveni-
ent to choose the constant, C, of equation (48) equal
to K (the complete elliptic integral of the first
kind) if ¢>>0 and equal to zero if ¢<C0. Equation
(48) then becomes, by virtue of equations (49),

U=+ (U,—u,) cd*f8 if 6>>0

if e<{0

(50)
U=+ (Uy—u,) cn? [0

In cither case, =0 at perigee and 0=KJf at
apogec (of course, this value is never attained for
escape orbits).

Since the nature of the elliptic functions en and
cd is strongly dependent on the magnitude of the
modulus, £, it i= desirable to estimate this quantity.
Recalling that ¢ is a function of £ and 7, it can be
shown that, for free orbits (£>(14-0)/2, 74z, ¢
has a maximum at §=1, n=n,. Evaluating ¢ at
this point gives the upper bounds

1 P [y —
§'SS arc sin 5\13+0
For the ecarth, ¢=~0.0016, giving, by means of
equation (47),

k2<6<10~*
<4105

where ¢ is Jacobi’s nome (ref. 11, eq. 901.00). As
will be scen later, these bounds permit the ex-
pansion of the solution in rapidly converging
series. In particular, considerable use will be
made of the Fourier series (ref. 12, p. 520, example
5)

27 & mnf
Ix/" = Y WCOS x? O

sn?fe—

and the relations (ref. 11, eqs. 121.00 and 122.03)

en?f0=1—sn*t
cd¥f§=sn? (f6+4-K)

(52)

where F is the complete elliptic integral of the
second kind.

Equations (50) can be transformed into the
classical two-body form by generalizing the con-
cepts of semilatus rectum (p), cccentricity (e),
semimajor axis (), true anomaly (»), and eccen-
tric anomaly (F) as follows:
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2
P=y, T,
U, — Uyg
e=p ,,2
__ P
="

cos (9/2)=cdfB
sin (v/2)=k"sdfo

if o0

All the classical relutions between p, e @, 2, I,
Py, ps arc thus preserved, as well as the represen-
tation of the orbit as a conic in the polar coordi-

nates p, ¥l
o . g :—_I)‘_'_ T
p=a (1—ecos F) 1Tecosw
J— —_ = p
py=0(1 ) 14-¢
B _.r_
Pa—‘a’ (1+E) 1—e
in F==il—¢ —“SM_
sin fi=v1—e 1+4ecost
1=M
cos [ 14ecos? L
. (549)
sin @=\'1“62_Sm_E—_
1—ecos B
cos v 08 e
T 1—ecos I
p—I£=2 arc tan ( — ’——)
14€ cos vty1—¢
in K
=2 arc tan ( — Fr——)
1—e cos E+/1—¢
B NTE_1teesy
I 1—ccos & \!1—__? J

Note first that ¢ does have the usual properties
associated with the term ‘‘cccentricity” (sce also
eqs. (56) and (57) below):

e=0 il =1, (circular orbit)

e=1 if n=0 (critical escape orbit)

e>1 if 7>>0 (supereritical escape orbit), for free
orbits
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\
cos (v/2)=cnfb

sin (2/2)=xnf8

if 670

k' :\1_1"_—’{2

r l—e¢ 0 .
tan 5= \/m tan 3 (e<1)

/

If it is recalled that u, and %, both satisfy the
characteristic equation

1
11+’Il.,,— E‘up2+g ”up3:0

1
n—i—ua—fuaz—l—g ol =0

it is possible to express £ and 7 as functions of p, a,
and e:

_p, o3+ )
£—2+ Op

. (55)
g
"2 60

While every quantity is computable {rom the
equations given, their nature is clarified by ex-
panding them as power series in o, the leading
term being in cach case the ordinary “two-body”
value. All the series given here are derived in de-
tail in appendix E. Abbreviated versions are
Listed here in order to show their qualitative be-
havior. First define ¢ and X by

e=4(n—n.)

A=q/g?

(56)

Then the parameters ¢, p, @ are given by

— 144y, 1 En 7. )
e—eo[] e P x]

14+2¢y N—4n

14-£n—38%2 N
3 SELEL /N SN L)

- |

_ R ot /D s ot
p=2¢ (1 3 A 9 ) )

e=1+4fn—4n

a=‘2‘—771 (1 +‘%” >\+%” A )
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If it is recalled that 2¢ is the square of the angular
momentwn and 7 is the total energy, it is clear
that these do reduce to the two-body values when
J=0=0.

It should be emphasized that the orbit is a conic
only in the plane of (p, »). In the physical plane
(p, 8), for cquatorial and polar orbits, or (p, ¢) for
inclined orbits, the curve is a distorted conic, the
difference between @ (or ¢), and » being a measure
of the distortion. The nature of this distortion is
clarified by a study of the transformation between
v and @ (eqs. (53));

cos (n/2)=cdf8
sin (¢/2)=Fk"sd [0

if >0

cos (n/2)=cnf8
if 00
sin (2/2)=snf6

Differentiating (by means of ref. 11, eqs. 731.01,
731.11, and 121.00)

ds_ ! ) ]
dv 2f\T—F% cos? (v/2)

r ife>0
Dotk ndfo
g Jr e

P

R ( (58)
df 1
dv 2f\1—k? sin® (1/2)

N sinz (2/2) | ifo>0

dv
L—ZE—-QfdnfO J J

As is shown in appendix E, these equations lead to
the same formal series connecting ¢ and 6, inde-
pendently of the sign of o:

f v—{— Z B sin mv

/ (59)
i . 17l7r
K "_,,,2_7 O sin 50
where
Bi= 1‘) )\—I-—'—)\Z .
B_<t,,
2 384
e > (60)
— )\+ 0 )\2 ce
€,
02:‘—‘1152k2... J

and the secular cocfficients are
_ 55") 2
j H’ +<1<)2+ A

5¢n
‘1__ _({w

The geometrical character of the orbit is now
clearly shown by the first of equations (54)

(61)

p= P

1+ecosv
and cquations (59). The orbit is a coniec scction
in the (p, ©) planc (cllipse, parabola, or hyperbola
according as 1, =1, or >1). Equation (59)
simply represents a rotation of cach point by the
amount 6—». This rotation consists of two parts:
a sccular part, that is linear in #, and a harmonic
part, of period 2 in », that vanishes at every
perigec and apogee. Because of the secular
motion successive perigees do not coincide in their
values of 8 (reduced modulo 2#). Instead, each
perigee is in “advance’” of its predecessor by the
amount

o5 (G ] @

To first order in J, this advance is
2rJ (l—g sin2]>
Af~ .
P

(Note that A6>-0 for equatorial orbits and A6<0
for polar orbits.)

(63)

For true equatorial orbits (I=0), 8 is the right
ascension, and equation (62) gives the total ad-
vance of perigee. IFor inclined orbits, the angles
¢ and Q must be studied in order to deseribe pre-
cisely the motion of the perigee and the node.

It is interesting to mnote for critical cscape

orbits, with 7=0, e=1, that the asymplotic
direction is
0= :!:I—{ T as p—>®
f

For equatorial orbits, K/xf>>1, so that the orbit
crosses itsell (see ref. 8).
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MOTION OF THE NODE AND PERIGEE

Since % has been obtained as a simple function
of the true anomaly, », the other quantitics can
be obtained by quadrature directly from equations
(25) and (27), combined with equation (E20).
The integration is straightforward in the case of
the node and perigee, and the results are:

Q=Q,+82+ > Q,sin mp
m=1

(64)
p=p, 10— P (e—q,)
or, in series form
¢=¢p+¢sv+ Zl¢m Siﬂ my (65)
where the coefficients are
_ JPq h
B, == Pjp 7rf+2 )
P
o] :__J a [1}1—}—6 ( f+2 Bz)] 4
€
Q — JPQ Bﬂ|+_2' (Bm—1+Bm+l) _o 3
m__-—-P¢3p pooy s M=4,0, ... )
(66)

The results, to the second order in J, are

where the coeflicients 55,, are given in appendix E,
equation (E19), and the cocflicients for ¢ are

K Dy
=P, %
(67)
B, Py
(pm—';‘n——P Qm, mf1,2,‘3
Note that
Qn=0(J™)
¢m=0(J”‘)

o that these serics converge rapidly.

The sccular terms, Q, and ¢, can be put in a
more familiar form by inserting the series expan-
sions for p, K, etc., and recalling that

a=dJ (l—g sin? I)

Pe=P, cos I

P\ozzof

2=—"15

(2—— sin

J2

3.
—=sin?f -I
JCOSI[1+J5+4£n< 252 >+

6‘3 Sgn (67 5571

o= 1+J iz
To the first order in JJ, if it is recalled that
26=p+0(J)
the secular terms are

Jcos I
QJ:__%_+...

» +J <2—— sm2]>

in complete agreement with the results of refer-
ence 1.

- .
12 52—{— sm I]—}—

Thus, for inclined orbits, the advance of the
node in one period is

2] cos I

AQ=—"TC"" 2L O(J?)

and the advance of perigee is (when reduced
modulo 27)

wJ(4—5 sin®l)

Ap= 7

+0(J%)
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Equation (65) can be inverted to give the true

anomaly, @z, explicitly in terms of ¢ (see
appendix E).
p=f"r 4 SNy, sinm T (68)
Ps m=1 Ps
To second order in J the cocfficients are
p=—2
®s
(69)
2
AL NS 2y
s 2

Since the equation of the orbit is

p

P T e cos v

1t is convenient to have a series for cos » in terms
of ¢ (see appendix E):

cos v= 3", cosm ¥ —% (70)
m=0 Ls

To second order in J the coefficients are

> (71)
1
(YZ_Q ™
1
03=§ vs j

Kinematics: Kepler’s Equation

The kinemalics of the motion are given by ecqua-
tion (25)
do
— ) } 2
—=P,u

dr

Inserting w from cquation (54) and df/de from
equation (38) gives

dr _ p 1 -
——— ¢ >0

de 2fP, (14 cos )21~k cos? (1/9) d
dr__ p? 1 50
~

T =
dv 2fPe (14 € cos )2 T—k?sin? (1/2)
Expanding the radicals by the binomial theorem

and integrating term-by-term gives the general-
ization ol Kepler’s equation

M=n (f—r,,)r-iﬁ[mk‘*’m (72)
m=0

where M can be called the mean anomaly and =
the mean motion, with

n=a=" Zf\/_ (73)

These integrals are evaluated in appendix E; the first three are

My=FE—e¢sin ¥

l:i:e

M= (f£4sin F)

and
C(2mN AN e [ oS ($)2) -
M,,,_<m )<4> (1—e?) /fa Checoagr®h o0
2m 3/2 v sin™" (¢/2)
1= ) (G) 0= | e gt <0
(74)

le=% (1= 0—(1F &)? [(1F2¢) E+esin £}
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the upper sign to be used when ¢ >0, the lower

when ¢<0.

Note that equation (72) reduces to the classical
form of Kepler’s equation in the case of vanishing
oblateness (6=0, k=0, p=2¢, f=1/2).

The analysis is now complete.  The kinematical
description of the orbit is given by equation (72),
the geometrical description by equations (53),
(54), (64), (65), (68), and (70). A numerical
example of the use of these equations is presented
in the next section.

NUMERICAL EXAMPLE
ORBIT DETERMINATION

As an illustration of the present theory, an inter-
mediate orbit will be fitted to the satellite 1958
82 (Vanguard 1) for the epoch 02 November 1960,
1227 U. T. (vef. 13). The six given pieces of data
are

Anomalistic period 134.03048 minutes

Inclination 34° 245
Right ascension of

ascending node 131° .796
Argument of perigee 47° .691
Ececentricity 0.18077
Mean anomaly 222° 764

The conventional methods of celestial mechanics
give an osculating ellipse with

1.3601810R
1.3111973R

Semimajor axis
Semilatus rectum

Solving Kepler’s equation gives the position at
epoch

p=1.5661320

¢=258° .6233

To fit an intermediate orbit Lo these data, the
following quantities will be preserved

Inclination

Right ascension of ascending node
Energy

Angular momentum

Geocentrie distance

Argument of latitude

€ T NI D~

The quantities » and £ are dircctly obtainable from
the semimajor axis and the semilatus rectum by

means of equation (55) with ¢=0. Thus, the data

are
Epoch 02 November 1960, 1227 U. T.
7 34° 245
Q 131°.796
7 —0.36759813
£ 0.65559865
o 1.5661320
@ 258° .6233

Straightforward application of the series expan-
sions (appendix I£) gives

¢=0.000852176
2=0.00198268
€=0.19063927
¢=0.19063815
a=1.3599642
p=1.3105392

32:7 >< 10_10
Q,=—0.000781244
Q. =—0.000148959
Q=1x10"*
»,=1.00114 2097
¢:=0.000154694

2/=0.99953549 ¢:=1x107"*
n=0.63039973 7 =—0.000154518
k*=0.000126172 7,=1X10"%

K/xf—1.00049629
A,=0.0000315437
Ay=TX 107"
B,=0.0000315584

(,=0.00007726
C,=0.999999986
C,=—0.00007726
0325 >< 10_9

Since the value of p at epoch is known, the value
of the eccentric anomaly, F, is obtainable from

p=a(l —ecos E)
the true anomaly, v, from

P

=
I+ecost

and the mean anomaly, M, from Kepler’s equation.
The values are

F=217°.3246
p=211°.1216
M=223°.9521

Sinee the values of @, ¢, and v are known at epoch,
the values of @, and ¢, are obtainable from equa-
tions (64) and (65). Summarizing, the equations
of the orbit are:
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1=34°245

p=1.3599642(1—0.19063815 cos I)

. 1.3105392
©140.19063815 cos ¢

2=131°.9565—0.000148959 »°—0°.00853 sin »
¢=47°.306441.001142097 »°4-0°.08863 sin v
v°=0.99885921 (¢°—47°.3064)
—0°.008853 sin [0.99885921 (¢° —47°.3064)]
cos v=0.000077259 {1—cos 2[0.99885921(¢°— 47°.3064)])

+0.999999986 cos [0.99885921 (¢°—47°.3064)] J

Kepler’s equation is
M°=223°.952 +2°.6860248 ¢(minutes) } )
(76

=1.000025530 E°—10°.92130 sin EJ

Anomalistic period =134.03048 minutes

sin » A

1+0.19063815 cos ¢

sin I£=0.95166038

0.19063815+cos v

€08 K= 3 10063815 cos 7
o > (77)
sin 2=0.98166038 sin 2
N 1—0.19063815 cos /7
cos I7—0.19063815
O T 019063515 cos )

To obtain the velocity components, equations
(14) and (28) give the horizontal component

B 1= 1 /%%
V,= %;‘%:17 /%(chosv)

Thus, for this orbit,
V=15451.40(1+0.19063815 cos #) miles/hour
To obtain the vertical component, equations (26)
and (58) give

d d
d—f_=—]’¢,2f \/1 —k? cos? % d—:f

N

Since u=(1/p) (14 € cos v), the vertical component
is

dr_2fe . Lt (R TN 23)0
a7 sin \/H(l k cos?y 2¢

Thus, for this orbit,

2" 9944.250 sin 1‘\/1 —0.000126172 cos? g miles/hour

The orbit is a spiral, with a fixed perigee and
apogee for cach revolution. The altitudes of
perigee and apogee are 399.1 miles and 24542
miles, respectively. The speed  at perigee 1s
18397.03 miles per hour, and the speed at apogee
18 12505.77 miles per hour. Each perigee is
0°.411155 in advance of its predecessor, and cach
ascending node is 0°.28125 west of its predecessor
(in right ascension).

EPHEMERIS COMPUTATION

Computation of position at specified times., —
When the time is specified, the procedure is 1o
compute the eccentric anomaly, #, from Kepler's
equation (eq. (76)), the true anomaly, », from
equations (77), and the remaining quantities from
equations (75). This has been done for various
times, and the following table shows the com-
parison between predicted and observed positions
(the “observed” positions having been computed
from the data of ref. 13).
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09 Nov. 1060, 1227 T. T Observed Predicted Computation of time of equator crossings. —To
9 Nov. 1960, 1227 U. 1. . o . § ao
. 3510731 355° 506 computc the time (’01:(j>pondmg to a prescribed
Altitude 1128.9 miles  1109.2 miles position, the procedure 1s to compute ¢ from ¢ by
Q 110°.630 110°.655 equation (75), F. from v by equation (77), and ¢
25 Nov. 1960, 1227 U. T. from Kepler's equation. The following table
¢ 31°.437 31°.282 Dows h on betsy lieted and
Altitude 1735.5 miles  1737.2 miles Shows 0' (‘Om'pf\T‘ISOT.] ctween predicted an
Q 62°.215 62°.507 observed times and altitudes:
Observed time Predicted time Observed | Predicted
Pass no. Dute altitude, | altitude,
km km
TIr | Min | Sece Hr Min | See
10360 05 Nov. 1960 12 30 58 12 30 33 1282 1269
10361 05 Nov. 1960 14 44 53 14 44 30 1290 1278
10535 21 Nov. 1960 18 59 15 18 59 10 ‘ 3219 3221
10651 | 02 Dec. 1060 13 42 06 13 42 ' I8 | 3041 3050

ORBIT ACQUISITION

In this section the equations are displayed that
provide the elements of an orbit when the position
and velocity vectors are known at a given time.
Specifically, let the position be specified by

ro geocentric distance
ay right ascension
8, declination

Let the velocity vector, as seen by an observer on
the carth, be speeified by

V, speed relative to the earth
8. azimuth, clockwise from north
ve flight path angle, upward from the horizontal

Denoting the earth’s angular spin velocity by w,
the velocity components with respeet to the
inertial coordinate system are found to be

V,=1,sin .
Va="V, cos v, sin B, ryw cos &

V=7V, cos v, cos B,

The horizontal component of the velocity with
respect to the inertial coordinate system is

V,= V2tV

and its azimuth g, is given by

Cos 5=%’ sin B:T;’
L4 ¥

The equations of appendix A then yield

cos /=cos d; sin B
sin (og— Q) ="tan & ctn 7
c0s (og— Q)=cos 3 /sin [

which determine the inclination, 7, and the right

ascension of the ascending node, Q. The dimen-
sionless geocentrie distance is

PO_—_"U«“JR

uy=1/po
and the dimensionless velocily components are
IV(,: Ve R/, va: TTHVR/P-

The parameter £ is given by equations (28) and
(14)

1 ,
522 (U(Jnkp)z

and the dimensionless energy, 7, is given by equa-
tions (30) and (20)

rmy (W T — g o

3
O':J(l —2 sin? I)

The various parameters a, p, € f, ete,, are then
obtained from £ and 5 as in the preceding section,
by means of the series expansions of appendix E.



THEORY OF THE SECULAR VARIATIONS IN THE ORBIT OF A SATELLITE OF AN OBLATE PLANET 19

The initial value of the argument of latitude,
¢, 1s given by (sce appendix A)

€0S =108 & ¢os {ay—,)
The initial value of the true anomaly, #, is
given by
pr=rT
" 1+e cos z,
To determine the proper quadrant note that

1 dudd
Tuide dr

1 dudrdn_
utdy d dr~

va:@ e sin v dv do
d wp dodr
so that W, and sin » have the same sign.

The eccentric anomaly, E, is given by equa-
tions (54), and the mean anomaly, A7, by Kepler’s
equation. Finally, with @, ¢, and » known,
the remaining constants €, and ¢, are given by
equations (64) and (65).

RELATIVISTIC EFFECTS

It was mentioned earlier that the energy equa-
tion (eq. (29)) has an application in the general
theory of relativity, The mathematical rela-
tionship between relativistic and oblateness ef-
fects will now be examined in detail.

Let 7, 8 be the polar coordinates introduced
previously, and let ¢ be the proper time and ¢, the
inertial time, that is, ¢ is measured by a clock at
the point (r, ), and ¢, is measured by an identical
clock infinitely far removed from all matter.
Then the relativistic formulation of the equations
of motion of a particle of negligible mass about a
body of mass M at the origin of coordinates con-
sists of the following three cquations

(=) (@) = () -5 ) =

(78)
dt 1—2U/e?)
2 de_

where ¢ is the speed of light, U is the negative of
the Newtonian gravitational potential of the mass
M at the point (r, ), E is the total energy per unit

mass of the particle, and B is the angular momen-
tum per unit mass of the particle. Equation (78)
is Schwarzschild’s solution of Einstein’s ficld
equations (ref. 14, p. 166, cq. 4.21a), equation
(79) is the “clock-equation” (ref. 8, p. 182, eqs. 6,
7, 10), and cquation (80) is the law of conser-
vation of angular momentum.

These equations can be transformed into the
notation of the present report by means of the
following definitions of dimensionless variables:

P'P:B/\:ﬁ )
E:(l/2)]’¢2
n=RE/u [ (s1)
T=t\u/I®
Ti=F \“’,A.L/Rs
u=R/r, v=up/Rc*

Eliminating ¢; between equations (78) and (79)
and transforming to the dimensionless variables

gives
RU—EUQ (1———) (82)

du
£ %) =n+

dr 1
ﬁ=l",,u2 (83)

de 27
Pu? (1—— o )

For the intermediate orbit about an oblate planet,

U= P (u+ au) (85)

giving,
du\?

2
¢ E) =n+p—£u2+'—‘1§ a’u3+§ oviu®  (86)

with
¢’ =o+6u¢ (87)

For the carth, »=6.95<X107" while ¢=0(10"3).
Thus, in equation (86), the ratio of the quintic
to the cubic term is, for bounded orbits

v(1+e)

2viut =ypul< ———<3X107°

so that the quintic term can safely be neglected!
Similarly, the sccond-order terms like ov, k%,
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»# will be neglected throughout. The equations
can then be reduced to the following form

A an L )
£<(10> =np+u—§fu +3<7 U
dr_ 1 \ (88)
de Dt
d(ri—7)__ _dr | 2v
e " (10+P¢u J

The solution of the first two ol equations (88)

has been obtained:
1

uza(l—e cos D)

nr=F—esin E-+-0(¢")

The third of equations (88) can be integrated by
transforming to the cccentric anomaly, E, as
independent variable, and neglecting second-order
terms. Its solution is

n(f,.—f):% (3E+esin )

with perigee at the time origin.  When the periodie
component is neglected the secular portion can be
written in the form

—‘ t=—a t1 (89)

To eliminate the inertial time, consider equation
(78) applied to a clock on the earth, with its time
denoted by ¢,.  With dr/dt==0 and d§/dt=7X107%,
it 1s found that

ti:(1+V)t3
and inserting this in equation (89) gives
3
tc——f:VZ‘e (%— 1) (90)

Thus, a clock in an orbit whose semimajor axis
is 3/2 the radius of the earth would show no secular
deviation from an identical clock on the earth.
For smaller orbits, the satellite clock would run
more slowly than the earth-bound clock, and for
larger orbits the satellite clock would run faster.
Inserting the numerical value of » for the carth
gives

3
(tc— t)secnnds:0'0219 (ﬁ— 1) (te)yenrs

Thus, the maximum attainable difference in clock
Tates is 0.02 second/year, which is probably not
detectable by current techniques,

Similarly, the relativistic cffect on the shape
of the orbit is equally insignificant. Inserting
equation (87) into equation (62) gives the rela-
tivistic effect on the advance of perigee as

Aezlﬂgﬂv

degrees/revolution

In the worst case (p=1) this gives
A9= 070027 revolution

and this quantity decrcases linearly as the size
of the orbit increases. In contrast, the advance
of perigee due to oblateness is

:360J

p2

A

degree/revolution

In the worst case (p=1), this gives
A—0° .584/revolution
DISCUSSION

The intermediate orbit presented in this report
is essentially a closed-form solution of the main
problem of artificial satellite theory; it is exact
in the case of equatorial orbits, and, as indicated
by the numerical example, is quite accurate for
inelined orbits. (It can be called a closed-form
solution because of the extremely rapid con-
vergence of the series expansions.) As in the
classical {wo-body problem, the kinematics of
the orbit are described by Kepler's equation.
When the time is prescribed, this is an implicit
cquation, containing as unknowns the two anom-
alies, F and ». Their values can be determined by
an obvious iterative procedure involving both
Kepler’s equations and the classical relations
between E and 2, equations (54). (In the numeri-
cal example this was unnecessary because of the
extremely small value of the modulus k, which
permitted A1, to be neglected, thus climinating »
from Kepler’s equation.)

The qualitative naturc of the approximation
can be deduced heuristically from equations (11).
The negleeted portion of the Hamiltonian, 17,
is proportional to cos 2¢, a strictly periodic func-
tion. This suggests that the intermediate orbit
is exact in its treatment of secular phenomena,
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and is in error only in the periodic terms. This
conjecture receives partial confirmation from the
numerical example; the errors seem to oscillafe,
and even after 30 days no systematic growth is
apparent.

Two further steps are needed to improve the
theory. Oneis to solve the perturbation equations
(appendix C) to determine the effects of the
portion, I7,, of the Hamiltonian. The other is to

include higher harmonics in the earth’s gravita-
tional potential. This second step could be split
into two by separating the higher order terms into
secular and harmonic portions, as was done in
equations (11). These steps should provide
significant improvements.

Avrs REsEarcn CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MorreT T1ELD, CALIF., Feb. 2, 1961



APPENDIX A

COORDINATE TRANSFORMATIONS

The transformation equations between astro-
nomical (p, @, 8) and orbital coordinates (o, @, I,
¢) are obtainable by either vector methods or the
methods of spherical trigonometry (see ref. 5).
The following redundant set is sufficient for the
purposes of this report.

sin §=sin Isin ¢ h
cos p=cos & cos (a—Q

cos I=cos § sin 3

> (A1)
cos I sin g=cos § sin (a—Q)
sin I cos ¢=cos § cos B
tan (a—Q)=cos [ tan ¢ J

Differentiating gives the partial derivatives of
the transformation from orbital to astronomical
coordinates:

O sinfcosg

Do coss o8 B

05 cosIsing . .
ST cosé =gsIn 3 sin ¢
o}

55_0

, - (A2)
Oa_cos/ _sinfB
Op Ccos?d cosd

Qa__singcosgsinl_ sin ¢ cos 8

of cos? & cos 8

0

o* 1

00 J
22

Now if S is a funetion of position, so that

S:S(p: a, 5):S(p1 Q I: ‘P) (‘&3)
then the partial derivatives 0S5/02, 0S/01, 0S/%¢
are not independent, but satisfy equation (4).
To prove this, take the partial derivatives of
equation (A3):

9§—O;SEQ+§ 0%
00 dx ' 3500

25252 08 0
I dadl' 280/
2S_25 20, 25 25
d¢ Oa dp B Op

I this is regarded as a sct of three simultancous
cquations in two unknowns, 0S/da and 3S/08,
then the determinant of the augmented matrix
must vanish:

25 2a 20
0 002 00

08 0a 08 | _
ofaraf | =°

252020
Q¢ Op O¢

Expanding and using cquations (A2) gives equa-
tion (4)

oS 0S8 0S8 .

29 op cos I_EI sin I ctn ¢
Thus the formulation as a canopical, HHamiltonian
system (cqs. (7) and (8)) is valid for any dis-
turbance function, S, that depends only on
position.



APPENDIX B

PHYSICAL SIGNIFICANCE OF THE CANONICAL CONSTANTS

The formation of the problem in terms of the
Hamilton-Jacobi equation consist of equations
(15) to (21). While this method of solution was
not used, it is important to discuss it in order to
prepare for future work involving the perturbation
equations of appendix C. In particular, such
work will require a physical interpretation of the
canonical constants.

Equations (15), (18), and (30) give immediately

p=D _-—aa—F=HOAtotal energy

Equations (16) and (18) give
oF
P“’:—b;: Pe,—angular momentum

P;;:g—g:pg:polar component of angular
momentum

Equations (5), (16), (18), and (21) give

1
d_‘r ; == (21)
where A is the cubic
h( ) P+p 2 p? +3p
(B1)
s (3B D)
=J\2P, g,
Integrating equation (21) formally gives
= f * VZhdp (B2)
£

where p is an arbitrary constant. Equations

(17), (18), and (B2) give

1
Q=—1+ pM/ﬁdp
ot [ L (LD,
Q —Q+ * 1 JPy

d
Pg Y ff—]-lpgpz P

Equations (21) and (12) then give

rdr
Qp:—r—%f%%dp

__f dr ([<p
¥ dpdr

rdr dQ
et )

Thus, if p, is perigee,
—,=r,, time of perigee passage

Q.= ¢,, aTgument of perigee

Qo=Q,, right ascension of the node at time
of perigee passage

This completes the identification of the constants.
They are the natural gencralization of the
canonical constants in the classical two-body
problem (ref. 7, p. 148).

23



APPENDIX C

THE PERTURBATION EQUATIONS

GENERAL THEORY OF CONTACT TRANSFORMATIONS WITH DISSIPATIVE FORCES

The general theory of coutact transformations
for conservative systems is well known (see, c.g.,
ref. 7, ¢h. 10). The purpose of this scction is to
extend the theory to include dissipative forees.
To do this, consider a canonical system

dq._oll

dr —ap‘+]71

7 7 1=1,2,3 (C1)
ap._ 22 2

dT aql+rl

with generalized coordinates, g, momenta, p, and
forces E, F. Let the Humiltonian be split ar-
bitrarily

n=i,-11,
and let
i=q: (T) P: Q)
(€2)
pi:pi(T) P: Q)
be a solution of the reduced system
9¢:_0oH,
D7 Opy
(C3)
opi__2H,
aT - aqz

where P, Q arc a shorthand notation for the six
constants, Pi, Py, Ps, Qi, @2, Q5. The equations
(C2) can be made to satisly the complete system
(C1) by allowing the constants P, Q to become
variables. This transforms the system (Cl) into
the system

0q; dP 0g: dQ,_ oI,

ST, dr ToQ, dr —op. T L

(CH
op; dP, , op. dQ,_ -bnl—i-F
an dT an dT aq, i

21

where use has been made of Einstein’s summation
convention that a repeated subscript is to be
summed over the values 1, 2, 3.

Multiplying the first of cquations (C4) by
dp/0Q:, the second by —0g:/00x and adding gives

11,
[PJ:QI:} %%"{"[Q]lec] dd(i] %Q +X

where
op; bq,
Y=Eige " 3,

and the Lagrangian brackets are defined by

(C5)

0g; Op:_ 04; Op:

—wal=3, 3y "oy oz

[zy]=
z, y denoting any of the variables I, Q.
Similarly, multiplying the first of equations (C4)
by bpi/bph, the second by —q:/oP, and adding
gives

dP d oIf, | +
2, 1) Lopiq,p) H=S54 T,
where
op; 2 o,
Y L*Li al) '_'[l' a[)k (06)

Now, il the transformation from (p, ¢) to r, Q

is a contact transformation, the ILagrangian
brackets reduce to (ref. 7, ch. 10)
[Q,, Q=P =

[ oif j#k
and the variables P, @ satisfy the canonical system

(le bUl

Tr —ob, Tk

(C7)
dr,__dlL_
dT D(Jk k
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This is the general formulation of the theory of
contact transformations with dissipative forces.

PERTURBATION EQUATIONS FOR ARTIFICIAL
SATELLITE THEORY

'To apply the results of the preceding section to
m'tiﬁcial satellite theory, identily the subseripts 1,
2, 3 with p, ¢, @, respectively. Instead of using
the P, @ notation, it is convenient to take as new
Coouhnatcs (see appemh_\ B)

o=
Q,=0e (C8)
n=0,
and, as their conjugate momenta,
3
P,=p,
PQ:]JQ (09)
Tp=—— Qp

The generalized forces E, F are found by identi-
fying equation (C1) with equation (8):

E,=0 h
» __ plPeD;sin o
Fo= P,sin [
_pDysing
Fa= P,sin 1 F(C10)
=D,
Fo=pD,

Fo=p(D, cos I—D; sin [ cos ¢)
with, of course,

I=arc cos Py/P,

Since ¢, occurs only in the expression for ¢ and
Q, only in the expression for @ (cgs. (64)), it
follows that

d¢ o

%, 1 a0, !

and all the other partial derivatives with respect
to ¢, and Q, vanish. Similarly, from ecquations
(C9)

‘bpsa__l Opa

dP, !

and all the other partial derivatives of p, and pq
vanish., Also, from equation (11),

J (P CH >(‘OS 20

so that 71, does not contain 2 and contains ¢, only
via ¢. Hence
of; olT, oI,

oQ =0 d¢, O¢

(C11)

Combining these results with equations (C5) to
(C7) gives the canonical system of perturbation
equations for artificial satellite theory:

= 3¢Tgﬁ by s Fogl— i 0319

(il?_ 'ﬂ+§§{‘~ paa;; /Laa;f Fna%% r(C12)

LU N
r._ aH,+F X
b L (C19)

Equation (C11) could be generalized to include
higher harmonics in the earth’s gravitational
potential without invalidating any of the subse-
quent analysis.

Equations (C12) and (C13), then, are the
perturbation equations that must be solved to
improve the intermediate orbit. While no at-
tempt will be made to solve them here, it may be
remarked that they are subject to the wusual
difficulty: the right members contain the old
coordinates (p, ¢, @) as well as the new coordinates
and momenta. Furthermore, the old coordinates
have not becn expressed explicitly in terms of =
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and the new variables. Rather, the coordinates
have been expressed in terms of the new variables,
the true anomaly, 7, and intermediate parameters
like a, p, ¢ £, f, ctc.

The true anomaly is related to 7 by an implicit
equation, namely, Kepler’s equation. It is for

this reason that so much emphasis has been
placed on series expansions (see appendix E),
since they form the only basis for attacking the
problem of expressing the partial derivatives in
equations (C12) and (C13) in terms of the new
variables.



APPENDIX D
CATALOG OF ORBITS

While the main purpose of this report is to
develop the theory of satellite orbits, other types
of orbits merit some mention. In this appendix
the complete catalog of types will be given, with-
out proofs. In every case the proof consists
merely in solving the characteristic equation
(eq. (33)) and then integrating the energy equa-
tion (eq. (34)). When elliptic functions and
integrals occur, reference will be made to the
appropriate formula of reference 11.

TYPE 1. 0<&<¢s
The equation of the orbit is (ref. 11, eq. 243.00)
u=1u-+A tany

where

= (—2y7Psinh ¢)

A:}y V3 (o—£%) (1+4 sinh?()

and the angles ¢ and ¢ arc defined by

3oy +30g—28°

sinh 3¢= 3 (o—E92

sin 2y =sn 2f6

1
0———~2f Feu kb
1 /oA
I=aV%

11 . 3
W2 -
ke=g+5 sinh Sy T ot

If 9<#p, then w>u,>1, p<1, and the orbit is
entirely inside the planet. If 7>y, then u,<1,
and the orbit intersects the surface of the planct at

]‘Ul

y=arc tan \/ 1

The orbit has no perigee; instead it approaches
the center of the planet (p=0, u= =) as

-
-1 K ()
J
If <0, the orbit has an apogee at
=0

U=1uU

If 20, the orbit is a captive escape orbit, with
the asymptotic direction (as p-—>)

—u
Yy=arc¢ tan 1

For realizable orbits, n>», and

1 1 39 211
371 Vigs “F<gtpvs
Thus, for equatorial orbits about the carth, with

¢=0.00186,
0.4827 < k2<0.9330

For this range ol values of k, the transformation
equations between 6 and ¢ can be approximated by

fo
7

: 1
sin 2¢=\/I—c tanh i

Y ; 144/ sin 2¢

2nf " 1—+/k sin 2¢

where K’ is the complete elliptic integral of the
first kind with the complementary modulus

F=AT—F

(see ref. 11, eq. 127.02).

TYPE 2. £=¢>0

27
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This is simply a special casc of type 1, with

>
3y
A= [=Y|1+3nve!
g
11 - . —1
A ACERL RN
=
1 1 5 . —1
31V 3
There is also the degenerate case when 3=—1/

(3y7). The characteristic equation has a triple
root, and the equation of the orbit is

1 12
=k (1+5)

Since o<{ 1, u>1, p<<1, and this orbit lies entirely
inside the planet.

TYPE 3. &>, n>m

The orbit equation is formally the same as for
type 1:
u=u;+A tan?
but now the paramecters are defined by the fol-
lowing equations:

“1:}7 \3(E—0) (@ cosh? {—1)

cosh? 3¢ A >0

2 m—n:
_ 3o +3at—28°
cosh 3¢= S F— o)

sin 2y =sn2f6

1
032—f Fey k)
1 Jod
J=3 \/ﬁ
1,1 3
EE SN Y M R
513 cosh f\/4 cosh? r—1

1.1 o
§+;\/3<7L<1

Thus

and the same approximations can be used as for
type 1.

If ¢>>0, there is no essential difference from type
1. Butif ¢<0, there is an internal perigec at

and, at perigee, the orbit is convex toward the
center of the planet. Outside the planet, the orbit
is essentially like those of type 1.

TYPE 4. &>o,n=m
The energy equation has two solutions:
u=u+A ctnh? fo
u—=1u,+A tanh? fg

where
=2 F=o
Y=
g
A==y
A== £

The first solution is unrealizable; if #<{0, then
<0, p<<0, which is meaningless; if ¢>0, then
u>>1, p<1, and the orbit lies entirely inside the
planet.

The second solution is simply a special case of
that of type 3, with £=0. But now, if ¢>>0, there
is no perigee. Instead, the internal portion of the
orbit is a spiral that approaches the circle p=n/c
as §—. I[ ¢20, the orbit is essentially like that
of type 3.

TYPE 5. £>0, 7<m

This type is obtainable formally from type 3
simply by changing the sign of cosh ¢. But now
the orbit is imaginary if ¢<C0 and internal if ¢>0.

TYPE 6. £>0, n=m

There are two solutions. One is the degencrate
case of type 5 with y=o. The other solution is

_ \/52_0
o

U=

that is, a circular orbit. If £ (1+0)/2, the orbit
lies inside the planct, otherwise outside.

TYPE 7. >0, n<n<lm

This type is, of course, the one discussed in the
body of the report. For the captive orbits, the
cceentricity e, and modulus &, can both be large,
so that the serics expansions may not be valid. In
this case, other expansions of the elliptic functions
must be used (see refl. 11, eqs. 125.02, 126.01).



APPENDIX E

SERIES EXPANSIONS

The scries expansions given in the section on satellite orbits are based on the definitions of nyand e,
equations (37) and (56). Expanding the first by the binomial theorem and inserting the result in the
sccond gives

(E1)

3/2 1 1 1
—4¢& m ‘ ot [l 20 B ¥
er=dtnt 35 5 (07) (onm=1pag b ek DL
Equation (40) can be transformed, by means of equations (37) and (56), into

_2 : fn!)\[\ﬁ ~3/4
{—g are sin [—4— (1—X)

The binomial theorem and the Maclaurin’s series for the inverse sine give

21+e0 LTTE9at g | (1155 1762 | 27et 4+(43sg , 663a 815,.>)\5 ]
128 81927 4096 ' 8192

1 -
—— | e
¢ Gem)\!\dl:“r A+ 2048 T 1024 T 10210

From this the successive powers of ¢ can be obtained and thence the trigonometric functions. The

useful ones are

1 1894-5¢.2 ., 77+ 5ey?
sin y——e(,]] [1+ Mg M+ 128” A3

1155 6560 7160> 4 (4389 1105¢,2 ‘3‘%6.) 5 :l 2
+<204s Too1 T 55206) M+ SToa+ Tomes T73725) * (E2)

2 5 35 105¢ 7€
_f0 2_&’_ 3__{ 2€ € €, €& 0 s 6. .. .
cos £ 1—gi M—TE X <G4 +4fz°> 334 144> 1024 +">+51104) A (E3)

and, if ¢>>0,

€0 ______2 2 Zﬂ) €’ 5603) 3
sin (Hd) 3V [1+ A MG 16t ires)
T7¢; Bep?  Hel eﬁ) 1, (385€  33e* | 65¢,° 77’ 5 :'
T 768 64 T7es132) M Go0e 351 Toiwa 144+.33117G A (E4)

while the sign of ¢ must be reversed when ¢<<0.

It is now smlpl) a malter of algebra to substitute these series into the definitions of the parameters,
k, f, p, ete., giving the following expansions:

P2t (1_14:;577 )\_1+Eng—£2n2 a2 ittt 5106 HE g4, ) (E5)

27 81 °

= [I_Hﬂx E_n_ﬁf) ( S5&n_ 5“ £y 3) (m/ 256n_ £, £ g 4>x4 ]
e 12 48Ty 105 T 504 50736 T 2502 384T 72

(E6)
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Squaring this and using (E1) gives

14-92 RPN 17 ) 91 3En— 382 4£3°
Pty gy 2 gy IEEIIE g 2R TR
51080 — 48’ +589° — 5&*° T
—4fn & Moo (ET)

The second of equations (55) can be solved for @ in terms of 9, o, and p:

11 [ S
= 47 417Vl 3[)

The binomial theorem and equation (E5) then give

~£n+£2 ?

5 5gtn? ,
(1 +_~_ >\+£77 )\2+ N4 E'ﬂz])f 1 N - ) (ES)

Equations (47), (E2), and (E4) give, for ¢>>0,

1 & € . 25€’ X 77 % ‘7050_ Ie(,> 5
¥ €°)‘|:1+<4 6 )M 32 ~17T2ss +(1‘)8 16 T 128 288 )

+(H55 ?)eq_*_‘%")ef E+]967604> M. ] (E9)

2048 96 ' 1024 96 ' 165888

and again the sign of & must be reversed when ¢<{0.
Equations (47) and (E4) give, for ¢>-0,

_l l i{l 1 ﬂ 7602 2 7 ‘3560
f_2[1 (4 12>)‘ (32 2477288 N 128 32+110‘?
9
560 35€n G() + SQED )\4.‘.] (EIO)

-4t
T 288 5048~ 10271024 1447165888

and the sign of ¢ must be reversed when ¢<{0.
The complete elliptic integral, K(k), has a well-known expansion in powers of & (ref. 11, eq. 900.00):

okt 25k 1225k | 3060k
K= 2<1+ +64+206+163S4+65536 )

Inserting the series for £? (eq. (E9)) gives, for >0,

K=" 60 A2 (750 13eq N 77e, , 5e? | 138 313¢,* > i, ]
K [ H( '76 Nt 128+384+"304 N+ {556+ 1536 T 1024 T 1327104/ * (E11)

and the sign of ¢ must be reversed when ¢<{0.
Combining with the series for f (eq. (E10)), gives the secular coefficients of equations (61):

____ 5En (380 35&n N (9)0‘)) 5005y 38552172) .
mf 1+4)‘+(1°" ) 501102 ) M HiFmaset 1832 T o216 ) (E12)

nf .1 5gn> (911 ) (12‘269 09587 | 95E%%\ .4
1—3 A 199 19H +2= TN (E13)

K 2304 147456 6144 3072
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Note that when the series for K and f are com-
bined, the odd powers of ¢ disappear; eliminating
the even powers by means of equation (E1) gives
equations (E12) and (E13), which are independent
of the sign of ¢.

Jacobi’s nome, ¢, has the well-known series

_eU )\+ € )\2_{_(7

and the sign of ¢ must be reversed when ¢<{0.

1360
12 7 9216

representation (ref. 11, eq. 901.00)

k2 75k 1707k .
~16 1+ +2, T904s+ 65536 )

Inserting the series for &% equation (E9) givoes,
for ¢>0,

Two other quantities that occur in certain Fourier series are

16 ]+€n )\+< 5€1_)))\2+ 7€U+5€n _I_lgini

64 * 384
and

K— 833+‘30an X

2 5y —1+—>\+ SN,
Equations (E15) and (E16) are valid as written
when ¢>0; when ¢<C0, the sign of ¢ must be re-
versed.

The series relating 6 and » (eqs. (59)) are ob-
tained as follows. Begin with the Fourier series
expansions (ref. 11, eq. 806.01)

1 ™
——_ Am 0s My
V1I—£? cos? (v/2) mz=2) ¢
(E17)
1 0
_—— ] —1 7"4’1," cOsS mp
VI—F2 sin? (1/2) ;;é;( )
where
5y 7d
AU:.'R
21
—22 2J><7 (If)  m=1,2,3, ...
(E18)

eg)\ 1259  107¢q

B=

B=jug | 1480+ (G 7em )t (

5€0x3

8
g2 [1 +4En+<3‘+10§77> A

35 1+ 8&n+ 166%7%)

By= 1327104

1152

27648

1+ +(1102+ 288 ) Mt

5045

77¢ , 13
3 0 0 4 1
+<6144 4090> A (E14)
g T7e 256 | 13¢ 3os9e04) .
) + 768 1536+ 512 +2654208 N (E15)
10040+S316£n
N-te, 31576 (E16)

The first four cocflicients are

3kt THRS | 245k°

A= 4+ 6 t512 T 2045 -
1,k 15k 2450
“HTT64 T 256 74006 7
_ 5k | 351
“TR12 T 2048
A, 3Ok

¥716384

Next define coefficients B,, by

"4, .
Bmz(—Q)},— i o<0

If the series for £* and f are introduced, the usual
reversal of sign of ¢ is nullified by the factor
(—1)™, and the resulting expressions are inde-
pendent of the sign of . The first four coeflicients
are

539  535¢n )
it ) g ]

1128 108 108

177y | 275¢% 2) v :,
g (E19)

]
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Tnserting these Fourier scries in equation (58)
gives
do_ K

dv 1rj (£20)

Z B,.cos mv

Integrating term-by-term  gives the first of
cquations (59)
K = B, .
=— 4 =7 sIn my
xf +m=; m

Conversely, to CXPTess » as 8 function of 8, begin
with the Fourier series (ref. 11, egs. 908.08, 908.03)

(— q)"‘ Tmrf

oL’ nd fo_K+Ix Z e €os —5= >0
2 dn fo= +K"i_ g cos%ﬁo, ¢<0
(E21)

Inserting these series in equations (58) and inte-
grating term-by-term gives the second of equa-
tions (59):

{0 Zm‘,ﬂsm f()

m=1 K
where
A=
"= im0
(E22)
_ 4q™ .
0= —_(1+-q2’”)m if ¢<Z0

By equation (E14), ¢ contains only odd powers of
€, so that again the usual sign reversal is nullified
by the factor (-——1)™, and the final expressions for
8. are independent of the sign of o.  The first four
cocflicients are:

e‘, 4 1667 105517
[ A+ 175 T a2 ))‘
tm g | 2+ 86 +( 1260 M+ (T34

b= [1+4£n+(%’+9£n) N ]

1+8E+ 1687y,

0=—"5308110

The inversion of equation (65) to obtain v ex-
plicitly as a function of ¢ is accomplished us fol-

lows. Assume an expansion of the form
v=04>, ¥, sin md (E24)
m=1
where
g=r_"%»
Ls

Then, by the usual formula of Fourier analysis,
v,,,=lf (v—3) sin mIdd
L

Integrating by parts gives

1 m

Vpym=—— cos mddv

mr J -«

Tence, from equation (65)

1 r © ..
Pp=—— f cos m{v4+2>3 #14in jl‘) dv
mnr —x =1 @s

2112,_*_10551,) A
20736 " 192 o
103 3gy?
TRUCIRE Lo NI

- (E23)

Expanding the cos into a Taylor’s series centered
at my, and carrying out the necessary multiplica-
tions of Fourier series, gives, to the fourth order
in o/,

1 1 p
7)1=—191—§ 0102+§ 1.913 .
1 2 2, 1 4
02:—02+§ 22—+ 5 193—6 .-
L (E25)

3 3
1‘32’_‘03-{—5 01(92—-g 1913 .

v =0y O 20,0, 20,%0, g D11+ -

where
i =0u/os
Since the equation of the orbit involves cos r,

it is desirable to have a series expansion for this
quantity. From equation (I£24),
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cos v=cos ¥ cos( > v, sin mﬂ)—sin & sin Zl ¥y, SIN mz?)
m=1 m==

Expanding in Maclaurin’s series and again carrying out the multiplications of the Fouricr series gives

cosv=_, C,cos m
m={

where, to the fourth order in J,

11 1
Co=—5 =g tiy 1500’

4
—1-l,a 1
01—-1 87)1 2 'y 4'0
1 1 1
szirl_érs_ﬁ 7)13 T

—-1! .l.vz _1_ 2__1.‘7__l.. ivﬂv
Gi=g gttt —g gt g e

1 1 1
04:51‘3+z731?f‘2+zg7)13 ..

C’s——H— 7 + ot e

The final serics ts the generalization of Kepler’s
equation (eq. (72)). The problem is to evaluate
the integrals

_ " cos¥(y/2)
b= o (1€ cos ¥)*

_ _sin®(y/2)
(l—l—e cos ¢)2

dy

To do this introduce the additional pair of integrals

_ [° cos¥ (¢/2)
a,:j; 1€ cos ¢ @

_ (" sin¥ (¥/2)
'Y’:J; 1+e cos¢d¢

By direet integration,

ol
A=Y=
V1 —é?
F—esin I7
B,=08,=

(1_62)3/2

zlzs-f-

1
11 Wb estt .

¢

3

(E26)

1
199?14+§l‘12172 .

< (E27)

384

Now consider

_ " cos¥ (Y/2) cos? (¥/2)
a‘Hl—j 1+ecos ¢ @y

L[ (e

1+ecos ¥
_lf
2

_Lfb CO
_26 0

The same method gives the analogous recurrence
relations

cos¥ (¢/2) < +cos ¢+1——>
1+ecosy

1
Pr=g et =g b

vn=—g [ sint! @R+ v

e—I—l
6J+1_ 2 7]+ 2 J'
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Thus, the successive cocfficients, M,, in Kepler’s  few are (upper sign to be used i ¢>>0, lower sign

cquation can be computed recursively. The first il e 0):

<
My=FE—esin ¥
A=2 T (BLsin E)
M, (1—62)3I22J*(1-F€> [(1+£26)E-+esin E]
T 32¢ - (E28)
M= 1‘)q 2 (1= (3eT2)vke sin o]+ (1T )[(3e£2) Eke sin £]]
M= 519‘7 —— {(1— V(262 F32E4120) - Se( £ 2e— 1) sin v+ €2 sin 20]—4(1 F €)*{ (3 4€) F-|-esin L]}
o
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